








## Past and present of the study design



 MOOSGRÜN project (2011-2014) (F1 & F2)

 MOOSWEIT project (2016-2019) (F3-F5)

OptiMOOS project (2020-2022)

Overview of the entire study site for Sphagnum farming in the Hankhauser Moor with irrigation system (Air image: ASEA aerial 2017).



## Past and present of the study design

### Past projects provide already six years of data

#### MOOSGRÜN:

 balancing the fluxes of greenhouse gas emissions of the production areas and the irrigation system of a Sphagnum farming site

#### MOOSWEIT:

 balancing the fluxes of greenhouse gas emissions of the production areas, the causeway and the irrigation system of a Sphagnum farming site including harvest from GHG collars closing the GHG balance



# Past and present of the study design



Measurement points of MOOSGRÜN/MOOSWEIT (blue) as well as OptiMOOS (green) (Air image: Google Earth)

Measurement program on the MOOSGRÜN/MOOSWEIT area



## **Budgets MOOSGRÜN**

#### Sphagnum production strips as CO<sub>2</sub> sink

|        |               | $CO_2$     | $\mathrm{CH}_4$ | $N_2O$        | Sum GHGs<br>(CO <sub>2</sub> eq) |
|--------|---------------|------------|-----------------|---------------|----------------------------------|
| Year 1 | S. palustre   | -629 ± 188 | 1.4 ± 0.5       | $0.0 \pm 0.3$ | -578 ± 209                       |
|        | S. papillosum | -898 ± 196 | $2.7 \pm 0.7$   | $0.1 \pm 0.2$ | -790 ± 221                       |
|        | Ditches       | 608 ± 393  | 14.4 ± 6.2      | $0.3 \pm 0.4$ | 1101 ± 577                       |
| Year 2 | S. palustre   | -547 ± 92  | $1.0 \pm 0.4$   | $0.0 \pm 0.1$ | -506 ± 98                        |
|        | S. papillosum | -875 ± 100 | $1.2 \pm 0.5$   | -0.1 ± 0.1    | -857 ± 108                       |
|        | Ditches       | 910 ± 604  | 4.8 ± 4.9       | $0.6 \pm 0.4$ | 1135 ± 631                       |

Table 1: Estimated annual balances of  $CO_2$ ,  $CH_4$  and  $N_2O$  together with combined climatic effect (all in g m<sup>-2</sup> a<sup>-1</sup>) for the production fields and irrigation ditches. Values are given  $\pm$  SE. Source: Günther et al. 2017, Mires & Peat).



## **Budgets MOOSWEIT**

#### Causeway as CO<sub>2</sub> source

#### Preliminary data

|           |               | $\mathrm{CO}_2$ | $\mathrm{CH}_4$ | N <sub>2</sub> O | Biomass<br>export<br>harvest |
|-----------|---------------|-----------------|-----------------|------------------|------------------------------|
| Year 2017 | S. palustre   | -322 ± 192      | $4.8 \pm 5.7$   | $0.0 \pm 0.1$    | 330 ± 13.4                   |
| until     | S. papillosum | 87.9 ± 283      | $5.8 \pm 1.8$   | -0.1 ± 0.1       | 330 ± 17.6                   |
| Year 2018 | Causeway      | 4230 ± 630      | 23.4 ± 15.6     | $0.4 \pm 0.1$    |                              |
|           | Ditches       | in prep.        | in prep.        |                  |                              |

Table 2: Estimated annual balances of  $CO_2$  and  $CH_4$  together with combined climatic effect (all in g m<sup>-2</sup> a<sup>-1</sup>) for the production strips and causeway. Values are given  $\pm$  SD.



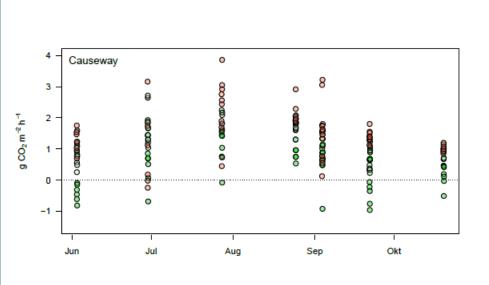
### Aims of OptiMOOS

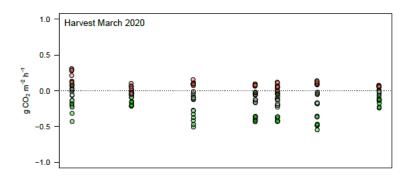


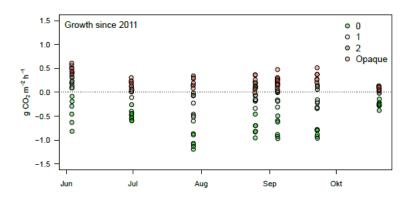
- 1a) Experiment water filter reed
- Experiment continuation of longterm investigations
- fa) Experiment minimisation topsoil removal
- 5a) Experiment minimisation of ditches
- GHG measurements
- 1a) Experiment water filter reed/cattail

Greenhouse gas measurements on the different experimental plots (Source: G. Gaudig).




Filter basins with reed/cattail (Photo: K. Gerwing).


- Determination and balancing of greenhouse gas fluxes in the filter basins
- Determination and balancing of the greenhouse gas fluxes of the *Sphagnum* production fields with different topsoil removal and irrigation system
- Balancing the greenhouse gas fluxes of a complete crop rotation in the entire production system.



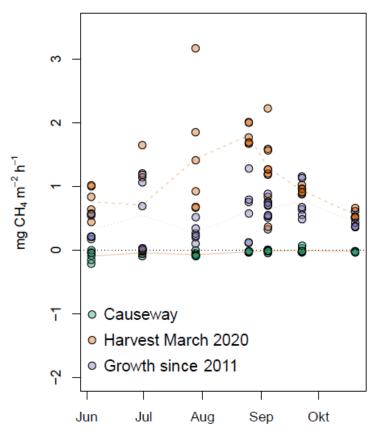

## First results of OptiMOOS (2020)

#### High CO<sub>2</sub>-emissions from causeway








Causeway values indicate source of CO<sub>2</sub>

Production strips indicate a CO<sub>2</sub> sink



### First results of OptiMOOS (2020)

## Generally low CH<sub>4</sub>-emissions with differences between production strips (negligible from causway)



- Harvest March 2020 variant with higher CH<sub>4</sub>-emissions
- Possible reason:
  - Removal of parts of the methanotroph community with the harvest
  - Dominating shunt species Juncus effuses







- Sphagnum production fields still indicating a CO<sub>2</sub> sink almost 10 years after establishment
- An optimization of the entire production area towards a minimum of dams and ditches is desirable

Thank you for your attention!